Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Remote Sensing of Environment
Volume 271, 2022, 112908

Intra-annual taxonomic and phenological drivers of spectral variance in grasslands

Rachael Thornleya, France F. Gerardb, Kevin Whitea

University of Reading, Reading, Berkshire, RG6 6AH, UK.


According to the Spectral Variation Hypothesis (SVH), spectral variance has the potential to predict taxonomic composition in grasslands over time. However, in previous studies the relationship has been found to be unstable. We hypothesise that the diversity of phenological stages is also a driver of spectral variance and could act to confound the species signal. To test this concept, intra-annual repeat spectral and botanical sampling was performed at the quadrat scale at two grassland sites, one displaying high species diversity and the other low species diversity. Six botanical metrics were used, three taxonomy based and three phenology based. Using uni-temporal linear permutation models, we found that the SVH only held at the high diversity site and only for certain metrics and at particular time points. We also tested the seasonal influence of phenological stage dominance, alongside the taxonomic and phenological diversity metrics on spectral variance using linear mixed models. A term of percentage mature leaves, alongside an interaction term of percentage mature leaves and species diversity, explained 15-25% of the model variances, depending on the spectral region used. These results indicate that the dominant canopy phenology stage is a confounding variable when examining the spectral variance-species diversity relationship. We emphasise the challenges that exist in tracking species or phenology-based metrics in grasslands using spectral variance but encourage further research that contextualises spectral variance data within seasonal plant development alongside other canopy structural and leaf traits.

Keywords: Phenology, Spectral variance, Species diversity, Multi-temporal, Grasslands, Vegetation.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution