Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Aquatic Toxicology
Vol. 174, 2016, Pages: 188–198

Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout (Oncorhynchus mykiss) at low pH: physiology and metal accumulation

Genan A. Al-Bairuty, David Boyle, Theodore B. Henry, Richard D. Handy

Ecotoxicology Research and Innovation Centre, School of Biological Sciences, Plymouth University, Plymouth, UK.


A few studies have investigated the interaction between copper toxicity and water pH in fishes, but little is known about the effects of acidic pH on the toxicity of copper nanoparticles (Cu-NPs). This study aimed to describe the sub-lethal toxic effects of Cu-NPs compared to CuSO4 at neutral and acidic water pH values in juvenile rainbow trout. Fish were exposed in triplicate (3 tanks/treatment) to control (no added Cu), or 20 μg l-1 of either Cu as CuSO4 or Cu-NPs, at pH 7 and 5 in a semi-static aqueous exposure regime for up to 7 days. Acidification of the water altered the mean primary particle size (at pH 7, 60 ± 2 nm and pH 5, 55 ± 1 nm) and dialysis experiments to measure dissolution showed an increased release of dissolved Cu from Cu-NPs at pH 5 compared to pH 7. Copper accumulation was observed in the gills of trout exposed to CuSO4 and Cu-NPs at pH 7 and 5, with a greater accumulation from the CuSO4 treatment than Cu-NPs at each pH. The liver also showed Cu accumulation with both Cu treatments at pH 7 only, whereas, the spleen and kidney did not show measurable accumulation of Cu at any of the water pH values. Exposure to acid water caused changes in the ionoregulatory physiology of control fish and also altered the observed effects of Cu exposure; at pH 5, branchial Na+/K+-ATPase activity was greater than at pH 7 and the inhibition of Na+/K+-ATPase activity caused by exposure to CuSO4 at pH 7 was also not observed. There were some changes in haematology and depletion of plasma Na+ at pH 7 and 5 due to Cu exposure, but there were few material-type or pH effects. Overall, the data show that the accumulation of Cu is greater from CuSO4 than Cu-NPs; however, understanding of the effects of low pH on bioavailability of CuSO4 may not be directly transferred to Cu-NPs without further consideration of the physico-chemical behaviour of Cu-NPs in acid water.

Keywords: Copper; pH; Nanomaterials; Oncorhynchus mykiss; Sodium; Na+/K+-ATPase.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution