3

 

Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Colloids and Surfaces B: Biointerfaces
Volume 212, 2022, 112349

Rapid photothermal detection of foodborne pathogens based on the aggregation of MPBA-AuNPs induced by MPBA using a thermometer as a readout

Laibao Zheng1, Wenjia Dong1, Chaochuan Zheng, Yunqiu Shen, Ruolan Zhou, Zhenxing Wei, Zhixuan Chen, Yongliang Lou

Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.

Abstract

Rapid and portable detection of foodborne pathogens is of great significance for food safety and public health. The colorimetric methods based on naked-eye have been demonstrated to be a suitable qualitative method for point-of-care testing (POCT). However, analytical instruments like a microplate reader must be needed for the quantitative assay. To overcome its limitation, we herein report a novel photothermal method for foodborne pathogens based on the photothermal effect of aggregated mercaptophenylboronic acid-functionalized AuNPs (MPBA-AuNPs) induced by MPBA to translate the colorimetric detection into a simple temperature measurement using thermometers as the readout. The aggregated AuNPs show higher photothermal conversion efficiency than well-separated AuNPs under 660 nm laser irradiation. In the presence of bacteria, MPBA-AuNPs will attach to the surface of bacteria and keep separated from aggregation induced by excess MPBA, resulting in a lower temperature increase under 660 nm laser irradiation. Using E. coli O157:H7 as a model target, a good linear relationship is observed between temperature increase and bacteria concentration from 1.00 × 105-1.00 × 109 cfu mL−1 (R2 = 0.9877) with a detection limit of 1.97 × 104 cfu mL−1, which is three orders of magnitude lower than of the MPBA-AuNPs-based colorimetric assays. The proposed photothermal method provided a universal platform for rapid and portable detection of broad-spectrum bacteria strains in real samples.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution