Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

The Journal of Nutrition
Vol. 145 (5), 2015, Pages: 1123S-1130S

Progress and Challenges in Developing Metabolic Footprints from Diet in Human Gut Microbial Cometabolism

Linda C Duffy, Daniel J Raiten, Van S Hubbard, and Pamela Starke-Reed

National Center for Complementary and Integrative Health.


Homo sapiens harbor trillions of microbes, whose microbial metagenome (collective genome of a microbial community) using omic validation interrogation tools is estimated to be at least 100-fold that of human cells, which comprise 23,000 genes. This article highlights some of the current progress and open questions in nutrition-related areas of microbiome research. It also underscores the metabolic capabilities of microbial fermentation on nutritional substrates that require further mechanistic understanding and systems biology approaches of studying functional interactions between diet composition, gut microbiota, and host metabolism. Questions surrounding bacterial fermentation and degradation of dietary constituents (particularly by Firmicutes and Bacteroidetes) and deciphering how microbial encoding of enzymes and derived metabolites affect recovery of dietary energy by the host are more complex than previously thought. Moreover, it is essential to understand to what extent the intestinal microbiota is subject to dietary control and to integrate these data with functional metabolic signatures and biomarkers. Many lines of research have demonstrated the significant role of the gut microbiota in human physiology and disease. Probiotic and prebiotic products are proliferating in the market in response to consumer demand, and the science and technology around these products are progressing rapidly. With high-throughput molecular technologies driving the science, studying the bidirectional interactions of host-microbial cometabolism, epithelial cell maturation, shaping of innate immune development, normal vs. dysfunctional nutrient absorption and processing, and the complex signaling pathways involved is now possible. Substantiating the safety and mechanisms of action of probiotic/prebiotic formulations is critical. Beneficial modulation of the human microbiota by using these nutritional and biotherapeutic strategies holds considerable promise as next-generation drugs, vaccinomics, and metabolic agents and in novel food discovery.

Keywords: diet, metagenomic,s microbial-host co-metabolism, microbiome probiotics/prebiotics .

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution