3
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Journal of Environmental Management
Volume 288, 2021, 112460

Microbial mechanism of enhancing methane production from anaerobic digestion of food waste via phase separation and pH control

Kai Fenga,1, Qiao Wanga,1, Huan Lia,b, Xinrui Duc, Yangyang Zhanga

Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.

Abstract

Phase separation and pH control are commonly used to improve methane production during anaerobic digestion (AD) of food waste, but their influencing mechanisms have not been fully discovered through microbial analysis. In this study, single-phase AD (SPAD), two-phase AD without pH control (TPAD-pHUC), and TPAD with fermentation pH controlled at 6.0 and 4.5 were conducted. The results showed that phase separation decreased the ratio of total bacteria to total archaea in the methanogenic phase. At the organic loading rate (OLR) of 1.9 g/(L·d), methanogenesis was dominated by acetoclastic Methanosaeta in both SPAD and TPAD-pHUC, while elevated Methanoculleus and active hydrogen production initiated a shift from the acetoclastic to hydrogenotrophic pathway in SPAD as OLR increased, eventually resulting in excessive acidification at OLR 3.2 g/(L·d). TPAD-pHUC was dominated by Methanosaeta with scarce hydrogen production genes, and thus maintained a delicate balance between fewer acidogens and methanogens at OLR 3.2–3.7 g/(L·d). TPAD with pH control exhibited higher methane yield (460–482 ml/g) at OLR 1.9 g/(L·d) due to the enhancement of protein degradation and the conversion from methylated compounds to methane by Methanosarcina. High Na+ concentration facilitated the proliferation of hydrogen production bacteria, but inhibited acetoclastic methanogenesis at OLR 2.4 g/(L·d). In comparison with SPAD and pH control, TPAD without pH control, integrating 4 d acidogenesis and 22 d methanogenesis, exhibited the best and steady performance at OLR 3.7 g/(L·d) with methane production exceeding 370 ml/g.

Keywords: Anaerobic digestion, Food waste, Microbial community, Phase separation, Fermentation, pH control.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution