Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Water Research
Vol. 68, No. 1, 2015; Pages: 479-486

Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release

Jie Ma, William G. Rixey, Pedro J.J. Alvarez

Department of Civil and Environmental Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA.


The increased probability of groundwater contamination by ethanol-blended fuel calls for improved understanding of how remediation efforts affect the fate and transport of constituents of concern, including the generation and fate of fermentation byproducts. A pilot-scale (8 m3) model aquifer was used to investigate changes in the concentrations of ethanol and its metabolites (methane and volatile fatty acids) after removal of the contamination source. Following the shut-off of a continuous release of a dissolved ethanol blend (10% v:v ethanol, 50 mg/L benzene, and 50 mg/L toluene), fermentation activity was surprisingly stimulated and the concentrations of ethanol metabolites increased. A microcosm experiment showed that this result was due to a decrease in the dissolved ethanol concentration below its toxicity threshold (∼2000 mg/L for this system). Methane generation (>1.5 mg/L of dissolved methane) persisted for more than 100 days after the disappearance of ethanol, despite clean air-saturated water flowing continuously through the tank at a relative high seepage velocity (0.76 m/day). Quantitative real-time PCR showed that functional genes associated with methane metabolism (mcrA for methanogenesis and pmoAfor methanotrophy) also persisted in the aquifer material. Persistent methanogenesis was apparently due to the anaerobic degradation of soil-bound organic carbon (e.g., biomass grown on ethanol and other substrates). Overall, this study reflects the complex plume dynamics following source removal, and suggests that monitoring for increases in the concentration of ethanol metabolites that impact groundwater quality should be considered.

Keywords: Groundwater; Ethanol; Source removal; Toxicity; Fermentation; Methanogenesis


Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution