Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Food Research International
Vol. 136, 2020

Effects of combining two lactic acid bacteria as a starter culture on model kimchi fermentation

Jae-JunLee, Yun-Jeong Choi, Min Jung Lee, Sung Jin Park, Su Jin Oh, Ye-Rang Yun, Sung Gi Min, Hye-Young Seo, Sung-Hee Park, Mi-AiLee

World Institute of Kimchi, Gwangju 61755, Republic of Korea


This study aimed to establish a mixed starter culture to standardize the flavor of kimchi, a traditional Korean food. Leuconostoc mesenteroides and Lactobacillus sakei were selected for the culture based on their key roles in kimchi fermentation. The effects of various starter culture mixing ratios on the overall fermentation process were investigated. Fermentation was carried out at 15 C for 72 h. In the microbial community analysis, a similar ratio to the initial mixed inoculated ratio was observed in the microbial environments. Treatment with high-rate L. mesenteroides inoculation, exhibiting hetero-fermentative characteristics, led to the production of mannitol (1393.11 mg/100 g), acetic acid (57.70 mg/kg), and lactic acid (1141.90 mg/kg), in addition to the induction of a rapid increase in the number of viable cells, thereby reducing the pH (pH 3.9). Conversely, treatment with high-rate L. sakei inoculation, exhibiting homo-fermentative characteristics, led to the production of less mannitol and acetic acid, with more lactic acid. Principal component analysis score plots showed a distinct difference in kimchi metabolites depending on the lactic acid bacteria (LAB) starter culture. Therefore, by using mixed LAB starter strains, this study demonstrated the value of various characteristics and standardized manufacturing of kimchi. LAB types and inoculation ratios greatly affected the types and concentration of metabolites in kimchi fermentation.

Graphical abstract

Keywords : Kimchi, Fermentation, Lactic acid bacteria, Metabolites, Volatile compounds, Flavor

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution