Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Journal of Industrial Microbiology & Biotechnology
Vol. 42 (1), 2015, Pages: 143-149


Direct starch fermentation to l-lactic acid by a newly isolated thermophilic strain, Bacillus sp. MC-07

Chang-Dae Jeong, Lovelia L. Mamuad, Seon-Ho Kim, Yeon Jae Choi, Alvin P. Soriano, Kwang Keun Cho, Che-Ok Jeon, Sung Sil Lee, and Sang-Suk Lee

Department of Animal Resource Technology, Gyeongnam National University of Science and Technology, Jinju 660-758, Korea.

Abstract

This study was conducted to investigate the effect of soybean meal (SM) and soluble starch (SS) on biogenic amine production and microbial diversity using in vitro ruminal fermentation. Treatments comprised of incubation of 2 g of mixture (expressed as 10 parts) containing different ratios of SM to SS as: 0:0, 10:0, 7:3, 5:5, 3:7, or 0:10. In vitro ruminal fermentation parameters were determined at 0, 12, 24, and 48 h of incubation while the biogenic amine and microbial diversity were determined at 48 h of incubation. Treatment with highest proportion of SM had higher (p<0.05) gas production than those with higher proportions of SS. Samples with higher proportion of SS resulted in lower pH than those with higher proportion of SM after 48 h of incubation. The largest change in NH3-N concentration from 0 to 48 h was observed on all SM while the smallest was observed on exclusive SS. Similarly, exclusive SS had the lowest NH3-N concentration among all groups after 24 h of incubation. Increasing methane (CH4) concentrations were observed with time, and CH4 concentrations were higher (p<0.05) with greater proportions of SM than SS. Balanced proportion of SM and SS had the highest (p<0.05) total volatile fatty acid (TVFA) while propionate was found highest in higher proportion of SS. Moreover, biogenic amine (BA) was higher (p<0.05) in samples containing greater proportions of SM. Histamines, amine index and total amines were highest in exclusive SM followed in sequence mixtures with increasing proportion of SS (and lowered proportion of SM) at 48 h of incubation. Nine dominant bands were identified by denaturing gradient gel electrophoresis (DGGE) and their identity ranged from 87% to 100% which were mostly isolated from rumen and feces. Bands R2 (uncultured bacterium clone RB-5E1) and R4 (uncultured rumen bacterium clone L7A_C10) bands were found in samples with higher proportions of SM while R3 (uncultured Firmicutes bacterium clone NI_52), R7 (Selenomonas sp. MCB2), R8 (Selenomonas ruminantium gene) and R9 (Selenomonas ruminantium strain LongY6) were found in samples with higher proportions of SS. Different feed ratios affect rumen fermentation in terms of pH, NH3-N, CH4, BA, volatile fatty acid and other metabolite concentrations and microbial diversity. Balanced protein and carbohydrate ratios are needed for rumen fermentation.

Keywords: 16S rDNA Denaturing Gradient Gel Electrophoresis, Biogenic Amine, In vitro Rumen Fermentation, Soybean Meal and Soluble Starch Ratio.

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution