Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Energies
Vol. 8, No.1, 2015; Pages: 399-429


Development of a Photosynthetic Microbial Electrochemical Cell (PMEC) Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives

Samir Bensaid, Bernardo Ruggeri and Guido Saracco

Dipartimento di Scienza Applicata e Tecnologia, DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

In this article the concept, the materials and the exploitation potential of a photosynthetic microbial electrochemical cell for the production of hydrogen driven by solar power are investigated. In a photosynthetic microbial electrochemical cell, which is based on photosynthetic microorganisms confined to an anode and heterotrophic bacteria confined to a cathode, water is split by bacteria hosted in the anode bioactive film. The generated electrons are conveyed through external “bio-appendages” developed by the bacteria to transparent nano-pillars made of indium tin oxide (ITO), Fluorine-doped tin oxide (FTO) or other conducting materials, and then transferred to the cathode. On the other hand, the generated protons diffuse to the cathode via a polymer electrolyte membrane, where they are reduced by the electrons by heterotrophic bacteria growing attached to a similar pillared structure as that envisaged for the anode and supplemented with a specific low cost substrate (e.g., organic waste, anaerobic digestion outlet). The generated oxygen is released to the atmosphere or stored, while the produced pure hydrogen leaves the electrode through the porous layers. In addition, the integration of the photosynthetic microbial electrochemical cell system with dark fermentation as acidogenic step of anaerobic digester, which is able to produce additional H2, and the use of microbial fuel cell, feed with the residues of dark fermentation (mainly volatile fatty acids), to produce the necessary extra-bias for the photosynthetic microbial electrochemical cell is here analyzed to reveal the potential benefits to this novel integrated technology.

Keywords:photosynthetic microbial electrochemical cell; dark fermentation; anaerobic digestion; microbial fuel cell

 

 

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution