3

 

Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Geoderma
Volume 423, 2022, 115961

Effects of afforestation on soil microbial diversity and enzyme activity: A meta-analysis

Hanyue Huanga, Di Tianb, Luhong Zhouc, Haojie Sua,d

Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.

Abstract

Afforestation is thought to be one of the key measures for mitigating climate change by capturing atmospheric carbon. However, despite the importance of afforestation in ecosystem functioning, its effects on soil microbial diversity and enzyme activity remain unclear. In this study, we conducted a meta-analysis of these effects, using a newly compiled dataset of soil microbial diversity and enzyme activity before and after afforestation collected from 80 sites worldwide. Soil fungal diversity and soil enzyme activities increased significantly after afforestation, but soil bacterial diversity did not change significantly. Among these soil enzymes, the activities of β-1,4-glucosidase (BG), urease (UREA), alkaline phosphatase (AP), dehydrogenase (DEH), and catalase (CAT) increased by 104.7%, 84.0%, 101.7%, 199.2%, and 58.3%, respectively. The responses of soil microbial diversity and enzyme activities varied across afforestation durations, climate zones, prior land use types, and species. Specifically, soil bacterial diversity and the activity of BG increased significantly with afforestation duration, and the increase in BG activity was higher in tropical than in temperate zones. In degraded sites, both soil microbial diversity and enzyme activities significantly increased after afforestation. In addition, structural equation models showed that soil carbon content, nitrogen content, and soil pH value were significant driving factors for the soil microbial community diversity and soil enzyme activities. Overall, our results provided a comprehensive understanding of the changes in soil microbial diversity and enzyme activity under different afforestation conditions, as well as scientific bases for locally adapted afforestation in the future.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution