Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking


Science of The Total Environment
Volume 880, 2023, 163101

River sediment microbial community composition and function impacted by thallium spill

Shuang Yana, Zhengke Zhangb, Ji Wangb

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.


Thallium (Tl) is widely used in various industries, which increases the risk of leakage into the environment. Since Tl is highly toxic, it can do a great harm to human health and ecosystem. In order to explore the response of freshwater sediment microorganisms to sudden Tl spill, metagenomic technique was used to elucidate the changes of microbial community composition and functional genes in river sediments. Tl pollution could have profound impacts on microbial community composition and function. Proteobacteria remained the dominance in contaminated szediments, indicating that it had a strong resistance to Tl contamination, and Cyanobacteria also showed a certain resistance. Tl pollution also had a certain screening effect on resistance genes and affected the abundance of resistance genes. Metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) were enriched at the site near the spill site, where Tl concentration was relatively low among polluted sites. When Tl concentration was higher, the screening effect was not obvious and the resistance genes even became lower. Moreover, there was a significant correlation between MRGs and ARGs. In addition, co-occurrence network analysis showed that Sphingopyxis had the most links with resistance genes, indicating that it was the biggest potential host of resistance genes. This study provided new insight towards the shifts in the composition and function of microbial communities after sudden serious Tl contamination.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution