1 5 5 1 1 7 3 2 1 0 0 2 2 g
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Journal of Dairy Science
Volume 101 (10), 2018, Pages 9028-9040

Nanotechnological approaches to colon-specific drug delivery for modulating the quorum sensing of gut-associated pathogens

V.L.N.Brandao* L.G.Silva*, E.M.Paula*, H.F.Monteiro*, X.Dai*, A.L.J.Lelis*, A.Faccenda†, S.R.Poulson‡, A.P.Faciola

Department of Animal Sciences, University of Florida, Gainesville 32611.

Abstract

Camelina is an oil seed crop that belongs to the Brassica family (Cruciferae). Camelina meal is a by-product from the biofuel industry that contains on average 38% crude protein and between 10 to 20% of residual fat, which limits the inclusion levels of camelina meal in dairy cow diets as the main protein supplement. Thus, we conducted a solvent extraction on ground camelina seed on a laboratory scale. The objectives of this study were (1) to assess the effects of replacing canola meal (CM) with solvent-extracted camelina meal (SCAM) in lactating dairy cow diets; and (2) to determine the effects of SCAM on microbial fermentation and AA flow in a dual-flow continuous culture system. Diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square with three 10-d experimental periods consisting of 7 d for diet adaptation and 3 d for sample collection. Treatments were 0, 50, and 100% SCAM inclusion, replacing CM as the protein supplement. Diets contained 55:45 forage:concentrate, and fermentors were fed 72 g of dry matter/d equally divided in 2 feeding times. On d 8, 9, and 10 of each period, samples were collected for analyses of pH, volatile fatty acids (VFA), N metabolism, NH3-N, digestibility, and AA flow. Statistical analysis was performed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC), and linear and quadratic effects of SCAM inclusion were assessed. Total VFA concentration and pH were not affected by diets. Molar proportion of acetate decreased, whereas molar proportion of propionate increased with SCAM inclusion. Total branched-chain VFA concentration was the least in fermentors fed diet 0, and greatest in fermentors fed diet 50. Digestibility of NDF decreased in fermentors fed SCAM diets, and dry matter, organic matter, and crude protein true digestibility were similar across diets. Concentration of NH3-N linearly decreased, and non-NH3-N linearly increased with SCAM inclusion. Bacterial efficiency (calculated as g of bacterial N flow/kg of organic matter truly digested) tended to be greater in fermentors fed diet 100. Outflow of Arg linearly increased with SCAM inclusion, whereas overall AA flow was not affected by diet. In conclusion, replacing CM with SCAM increased propionate molar proportion and non-NH3-N flow, and decreased NH3-N flow and concentration, which may improve animal energy status and N utilization. Inclusion of SCAM did not change most AA flow, indicating that it can be a potential replacement for CM.

Keywords: amino acid, digestibility, nitrogen metabolism.

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution