Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Microbiological Research
Volume 247, 2021, 126726

Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth

Paola Fincheira, Andrés Quiroza,c, Gonzalo Tortellaa,b, María Cristina Dieza,b, Olga Rubilara,b

Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.


Volatile organic compounds (VOCs) emitted by microorganisms have demonstrated an important role to improve growth and tolerance against abiotic stress on plants. Most studies have used Arabidopsis thaliana as a model plant, extending to other plants of commercial interest in the last years. Interestingly, the microbial VOCs are characterized by its biodegradable structure, quick action, absence of toxic substances, and acts at lower concentration to regulate plant physiological changes. These compounds modulate plant physiological processes such as phytohormone pathways, photosynthesis, nutrient acquisition, and metabolisms. Besides, the regulation of gene expression associated with cell components, biological processes, and molecular function are triggered by microbial VOCs. Otherwise, few studies have reported the important role of VOCs for confer plant tolerance to abiotic stress, such as drought and salinity. Although VOCs have shown an efficient action to enhance the plant growth under controlled conditions, there are still great challenges for their greenhouse or field application. Therefore, in this review, we summarize the current knowledge about the technical procedures, study cases, and physiological mechanisms triggered by microbial VOCs to finally discuss the challenges of its application in agriculture.

Keywords: Microorganisms, Volatile organic compounds (VOCs), Plant growth, Action mechanisms, Challenges.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution