Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Annals of the New York Academy of Sciences.
Vol. xx, No: xx, 2010, Pages: xxx - xxx.

Soil fertility controls the size-specific distribution of eukaryotes.

Mulder C.

National Institute for Public Health and the Environment, RIVM-LER, Bilthoven, the Netherlands.


The large range of body-mass values of soil organisms provides a tool to assess the organization of soil ecological communities. Relationships between log-transformed body mass M and log-transformed numerical abundance N of all eukaryotes occurring under organic pastures, mature grasslands, and seminatural heathlands in the Netherlands were investigated. The observed allometry of (M,N) assemblages of below-ground communities strongly reflects the availability of primary macronutrients and essential micronutrients. This log-linear model describes the continuous variation in the allometric slope of animals and fungi along an increasing soil fertility gradient. The aggregate contribution of small invertebrates (M < 1 microg) to the entire faunal community is highest under nutrient deficiency and causes shifts in the mass-abundance relationships. The phosphorus concentration in the soil explains 72% of these shifts but the nitrogen concentration explains only 36%, with copper and zinc as intermediate predictors (59% and 49%, respectively). Empirical evidence supports common responses of invertebrates to the rates of resource supply and, possibly, to the above-ground primary production of ecosystems.

Keywords:soil ecological communities,mass-abundance relationships,shifts but the nitrogen.


Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution