Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Journal of Environmental Management
Volume 297, 2021, 113195

Impact of elevated phosphogypsum on soil fertility and its aerobic biotransformation through indigenous microorganisms (IMO's) based technology

Indraneel Sengupta, Paltu Kumar Dhal

Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata, 700032, India.


Phosphogypsum (PG) is a waste by-product of phosphate fertilizer industry, produced in huge amount during the manufacture of phosphoric acid by economic wet process. Assessment of PG toxicity on soil has been poorly emphasized, therefore an efficient methods needs to be adopted to assess its toxic effect on soil fertility. We also need an effective eco-technological strategies for better waste PG management in order to improve the environmental health. The present study aimed to investigate the impact of PG toxicity on fertile soil and utilization of indigenous microorganisms for aerobic detoxification of PG contaminated soil to evaluate the scope for biostimulation based in situ bioremediation. In this study it is evident that application of PG to fertile soil in certain concentration results highly acidic, sulfate rich, aerobic environment, thus severely weakens the metabolic activity of the indigenous microorganisms. This investigation via microcosm based study further evaluated the intrinsic biotransformation ability of these microorganisms and found that was enhanced significantly (>95% reduction in sulfate concentration in 180 days) with carbon, nitrogen and phosphate amendments. Community level physiological profiling analyses indicated distinct shift in metabolic abilities following carbon amendments. Our study for the first time may help to formulate a strategy in aerobic biotransformation of PG contaminated soil environment, yet appreciable rate by supplying adequate nutrients.

Keywords: Phosphogypsum contamination, Indigenous microorganisms, Community level physiological profiling, Aerobic biotransformation.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution