2 1 83
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Environmental Science and Pollution Research
Vol. 22 (2), 2015, Pages: 946-962

Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water

Sunita Sharma, Bikram Singh, V. K. Manchanda

Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176 061, Himachal Pradesh, India.

Abstract

Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium (237Np), plutonium (239Pu), americium (241/242Am) and curium (245Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium (137Cs) and strontium (90Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have significantly raised the amount of heavy metals and radionuclides in it. Also, these activities are continuously increasing the area of the contaminated sites. In this context, an attempt has been made to review different modes of the phytoremediation and various terrestrial and aquatic plants which are being used to remediate the heavy metals and radionuclide-contaminated soil and aquatic systems. Natural and synthetic enhancers, those hasten the process of metal adsorption/absorption by plants, are also discussed. The article includes 216 references.

Keywords: Radionuclides, Heavy metals, Terrestrial plants, Macrophytes, Chelating agents.


 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution