3

 

Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Environmental Research
Volume 208, 2022, 112780

Aggregation performance and adhesion behavior of microbes in response to feast/famine condition: Rapid granulation of aerobic granular sludge

Zhengwen Lia, Qingting Menga

Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.

Abstract

Periodic starvation was a common strategy for the rapid start-up of aerobic granular sludge (AGS), and investigating the behavior of microbes that originated from inner or outer layer in response to feast/famine condition could provide more details for the development or stability of AGS. In this work, the microbes of the AGS were isolated by layers, the aggregation of microbes, the adhesion behavior of microbes, and viscoelasticity of the layer formed by microbes, at feast/famine conditions, were investigated for the in-depth understanding of the start-up and stability of AGS. The famine condition reduced the negative charge and deprotonated carboxyl groups of the surface thereby boosting the aggregation and adhesion of microbes. The feast condition was more beneficial for the stability of the layer as it caused a denser layer of microbes. The inner core microbes (IC) presented a higher aggregation rate than the outer layer microbes (OL) at feast/famine conditions. Also, the IC presented the highest aggregation rate, adhesion rate, and adhesion mass at famine conditions, which was most in favor of the start-up stage of the aerobic granulation. Since the denser layer was formed by IC, IC had better advantages over OL at the famine stage in the formation of a more stable layer. This study affirmed the role of microbes in the inner layer of the granule during the start-up phase and provided a theoretical basis for understanding the significance of the famine period for rapid granulation.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution