Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Marine Pollution Bulletin
Volume 172, 2021, 112846

Interactions between heavy metals and bacteria in mangroves

Shanshan Menga,1, Tao Penga,1, Amit Pratusha, Tongwang Huanga, Zhong Hua,b

Department of Biology, Shantou University, Shantou, Guangdong 515063, PR China.


Environmental heavy metal pollution has become a serious problem in recent years. Therefore, our study investigated seven heavy metal-contaminated mangroves (Beihai, Fangchenggang, Hainan, Hongkong, Shenzhen, Yunxiao, and Zhanjiang) in southern China, and found that they were particularly polluted with Zn and Pb. These heavy metals were mainly distributed in the surface sediments of the mangroves. Among these seven mangroves, the Shenzhen mangrove was the most polluted site, whereas the Beihai mangrove was the least polluted. Moreover, the bacterial communities in the mangroves were significantly associated with heavy metal contamination. For instance, Fusibacter was significantly correlated with Pb, Zn, Cu, Co, Ni, Cd, and Ag (P < 0.05, R = −0.47). Syntrophorhabdus was also significantly correlated with heavy metals (P < 0.05, R = 0.63). Furthermore, Geo-Chip analyses were conducted to demonstrate the involvement of many functional genes in heavy metal transport, particularly Ni transport. Our results also demonstrated that the heavy metals could be transported by various bacteria. For example, Pseudomonas and Burkholderia were involved in various heavy metal transportation mechanisms, particularly for Ni and Zn, suggesting that these bacteria could be used for heavy metal remediation. Therefore, our study provides insights into the interactions between bacterial communities and heavy metals, which could enable the development of novel mangrove protection strategies.

Keywords: Mangrove, Heavy metal, Bacterial communities, Interaction.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution