3

Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Science of The Total Environment
Volume 770, 2021, 144730

Clomazone improves the interactions between soil microbes and affects C and N cycling functions

Lili Ronga,b, Xiaohu Wua, Jun Xua, Fengshou Donga, Xingang Liua, Hanqing Xua, Junli Caoa, Yongquan Zhenga

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Abstract

Clomazone, a widely used herbicide, is mainly used in soybean fields. We previously found that clomazone alters Proteobacteria and Nitrospirae abundances and also alters urease activity, which result in changes in NH4+ and NO3− contents in soil nitrogen cycling. It remains unknown, however, how the co-occurrence patterns of species and functions of soil ecosystems change in response to clomazone applications in soil. We designed a 3-month greenhouse experiment to investigate soil microorganism dynamics in response to clomazone. Clomazone was applied at three doses (e.g., T1, T10, T100), which significantly increased bacterial abundance at days 15 and 60. Fungal abundance was stimulated at day 30 in T10-treated soils, whereas fungal abundances decreased in T100-treated soils at day 15. Clomazone altered bacterial and fungal community structures. Network analyses showed more complex and highly connected microbial communities in clomazone-treated soils. Moreover, an Acidobacteria-dominated cluster was identified within each network of clomazone-treated soils. Clomazone applied at the recommended rate decreased the functional groups that were associated with denitrification and hydrogen oxidation at days 15 and 60, and enhanced photoheterotrophy from days 30 to 60. High clomazone inputs increased trophic types (e.g., chemoheterotrophy, phototrophy, photoautotrophy and cyanobacteria) and C cycling functional groups (e.g., fermentation and cellulolysis). The half-life of clomazone ranged from 40.1 to 93.5 days in three cases. Our results provide important information for use of this herbicide.

Keywords: Clomazone, Community structure, Network, Acidobacteria, Functional groups.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution