Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Vol. xx, No: xx, 2012, Pages: xxx - xxx

Hopanoids in marine cyanobacteria: probing their phylogenetic distribution and biological role

Senz JP, Waterbury JB, Eglinton TI, Summons RE

Joint Program in Chemical Oceanography, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, Cambridge, MA, USA.


Cyanobacteria are key players in the global carbon and nitrogen cycles and are thought to have been responsible for the initial rise of atmospheric oxygen during the Neoarchean. There is evidence that a class of membrane lipids known as hopanoids serve as biomarkers for bacteria, including many cyanobacteria, in the environment and in the geologic record. However, the taxonomic distributions and physiological roles of hopanoids in marine cyanobacteria remain unclear. We examined the distribution of bacteriohopanepolyols (BHPs) in a collection of marine cyanobacterial enrichment and pure cultures and investigated the relationship between the cellular abundance of BHPs and nitrogen limitation in Crocosphaera watsonii, a globally significant nitrogen-fixing cyanobacterium. In pure culture, BHPs were only detected in species capable of nitrogen fixation, implicating hopanoids as potential markers for diazotrophy in the oceans. The enrichment cultures we examined exhibited a higher degree of BHP diversity, demonstrating that there are presently unaccounted for marine bacteria, possibly cyanobacteria, associated with the production of a range of BHP structures. Crocosphaera watsonii exhibited high membrane hopanoid content consistent with the idea that hopanoids have an important effect on the bulk physical properties of the membrane. However, the abundance of BHPs in C. watsonii did not vary considerably when grown under nitrogen-limiting and nitrogen-replete conditions, suggesting that the role of hopanoids in this organism is not directly related to the physiology of nitrogen fixation. Alternatively, we propose that high hopanoid content in C. watsonii may serve to reduce membrane permeability to antimicrobial toxins in the environment.

Keywords:Cyanobacteria are key players in the global carbon and nitrogen cycles,collection of marine cyanobacterial enrichment and pure cultures,cellular abundance of BHPs and nitrogen limitation in Crocosphaera watsonii.


Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution