Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology
Volume 254, 2021, 110574

Reductionism in the study of enzyme adaptation

Peter A.Fields

Biology Department, Franklin & Marshall College, Lancaster, PA 17603, USA.


One of the principal goals of comparative biology is the elucidation of mechanisms by which organisms adapt to different environments. The study of enzyme structure, function, and stability has contributed significantly to this effort, by revealing adaptation at a molecular level. Comparative biochemistry, including enzymology, necessarily pursues a reductionist approach in describing the function and structure of biomolecules, allowing more straightforward study of molecular systems by removing much of the complexity of their biological milieu. Although this reductionism has allowed a remarkable series of discoveries linking chemical processes to metabolism and to whole-organism function in the context of the environment, it also has the potential to mislead when careful consideration is not made of the simplifying assumptions inherent to such research. In this review, a brief history of the growth of enzymology, its reliance on a reductionist philosophy, and its contributions to our understanding of biological systems is given. Examples then are provided of research techniques, based on a reductionist approach, that have advanced our knowledge about enzyme adaptation to environmental stresses, including stability assays, enzyme kinetics, and the impact of solute composition on enzyme function. In each case, the benefits of the reductionist nature of the approach is emphasized, notable advances are described, but potential drawbacks due to inherent oversimplification of the study system are also identified.

Keywords: Reductionism, Enzymology, Environmental stress, Enzyme stability.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution