3
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Journal of Hazardous Materials
Volume 418, 2021, 126268

Peroxidase driven micromotors for dynamic bioremediation

Melis Bayraktaroglua, Beatriz Jurado-Sánchezb, Murat Uyguna,c

Adnan Menderes University, Faculty of Science and Arts, Department of Chemistry, Aydın, Turkey.

Abstract

Phenolics are size products present in tons concentrations in industrial wastewater that can cause adverse health effects when released in the environment. As such, there is a growing interest in the development of efficient strategies for the removal of phenolic compounds from polluted water. Herein we describe the use of poly(3,4-ethylenedioxythiophene) (PEDOT)-Au/peroxidase micromotors as dynamic biocatalytic platforms for the removal of model phenolics (phenol, bisphenol A, guaiacol, pyrogallol and catechol). Micromotors are synthetized by using a simplified template electrodeposition protocol followed by covalent enzyme immobilization in the inner Au layer. Kinetic parameters revealed that enzyme immobilization in the inner micromotor layer increased over 2-fold the enzymatic activity, along with increasing operational pH and thermal stabilities. The micromotors can propel at speed of up to 60 µm/s, generating an enhanced fluid mixing that results in removal efficiencies of up to 60% as compared with the 27% removal when using free peroxidase under the same conditions. In addition, excellent activities of almost 100% were obtained within ten cycles of removal using the micromotors. This newly developed bioremediation strategy holds considerable promise in for its application in large scale water treatment systems and many relevant environmental processes.

Keywords: Micromotors, Bioremediation, Phenolic compounds, Enzyme immobilization.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution