Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Journal of Environmental Management
Volume 307, 2022, 114557

Isolation of functional bacterial strains from chromium-contaminated site and bioremediation potentials

Wenfang Chena,1, Wenbo Lib,1

The First Institute of Geo-environment Survey of Henan, Zhengzhou, 450045, PR China.


In this study, two Cr(VI)-reducing functional bacterial strains (TJ-1 and TJ-5) were successfully isolated and screened from the chromium-contaminated soil from a real site. The 16S rRNA gene sequences were analysed, which showed high similarity (>99%) with Stenotrophomonas maltophilia (TJ-1) and Brucella intermedius (TJ-5) species. The optimum growth for the two bacteria to reduce Cr(VI) were achieved at pH 7.0 and initial inoculation amount of 5%. The two strains were applied to real contaminated soil samples and showed better Cr removal when external carbon sources were added. Using sawdust as a solid-phase carbon source supplement, both TJ-1 and TJ-5 showed higher remediation efficiency (99.77% and 93.86%) than using glucose as the carbon source (68.56% and 70.87%). Results of the stability of soil Cr(VI) bioremediation revealed that the water-soluble Cr(VI) content of bioremediated sample remained unchanged, indicating that Cr(VI) is not easily released after death of the strains. Solid-phase carbon source supplements may help the cells to attach and grow into biofilms, creating a better growth condition which improved the remediation efficiency. Column experiments showed that the total remediation efficiencies by the two strains were 34.23% and 20.63%, respectively, within a short time period (76 h). Therefore, the two strains showed great bioremediation potentials for chromium-contaminated sites and can be used in future application of in-situ bioremediation.

Keywords: Chromium-contaminated site, Cr(VI)-Reducing bacteria, Microbial remediation, Strain isolation.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution
Query Form | Feedback | Privacy