Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
mn

Site Visitors

blog tracking


 
Journal of Contaminant Hydrology
Vol. 160, 2014; Page: 21 - 29

Control of groundwater pH during bioremediation: Improvement and validation of a geochemical model to assess the buffering potential of ground silicate minerals

Elsa Lacroix, Alessandro Brovelli, Christof Holliger, D.A. Barry

Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Ecological Engineering Laboratory, Station 2, 1015 Lausanne, Switzerland.

Abstract

Accurate control of groundwater pH is of critical importance for in situ biological treatment of chlorinated solvents. The use of ground silicate minerals mixed with groundwater is an appealing buffering strategy as silicate minerals may act as long-term sources of alkalinity. In a previous study, we developed a geochemical model for evaluation of the pH buffering capacity of such minerals. The model included the main microbial processes driving groundwater acidification as well as mineral dissolution. In the present study, abiotic mineral dissolution experiments were conducted with five silicate minerals (andradite, diopside, fayalite, forsterite, nepheline). The goal of the study was to validate the model and to test the buffering capacity of the candidate minerals identified previously. These five minerals increased the pH from acidic to neutral and slightly basic values. The model was revised and improved to represent better the experimental observations. In particular, the experiments revealed the importance of secondary mineral precipitation on the buffering potential of silicates, a process not included in the original formulation. The main secondary phases likely to precipitate were identified through model calibration, as well as the degree of saturation at which they formed. The predictions of the revised geochemical model were in good agreement with the observations, with a correlation coefficient higher than 0.9 in most cases. This study confirmed the potential of silicates to act as pH control agents and showed the reliability of the geochemical model, which can be used as a design tool for field applications.

Keywords: Groundwater acidification; In situ bioremediation; Buffer injection; Geochemical modeling; Mineral dissolution; Organohalide respiration


 

 

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution