2
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
International Journal of Biological Macromolecules
2015

Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery

Xu Qin, Xuemei Xiang, Xiaowen Sun, Hong Ni, Lin Li

State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.

Abstract

A series of amino, carboxylic, and aldehydic surface-grafted silica nanoparticles (SNPs) was prepared based on SiO2 NYSi40 nanoparticles to develop an efficient, biocompatible, and cost-effective biopesticide delivery system. Bacillus thuringiensis chitinase (Chi9602) was immobilized onto SNP surface to prepare nanoscale chitinases (SNPCs) through electrostatic adsorption and covalent binding. The specimens were characterized by Fourier transform infrared, scanning electron microscopy, and zeta-potential analyses. The delivery capacity of the SNPs in Caenorhabditis elegans N2 was observed by immunofluorescence. Results demonstrated that amino-grafted SiO2 nanoparticles with Chi9602 electrostatically adsorbed onto their surface (SNPC2) exhibited a relatively high enzyme immobilization rate (80.2%) and the highest (94.1%) residual enzyme activity among all SNPCs. SNPC2 also showed wider pH tolerance and relatively higher thermostability and ultraviolet radiation resistance capacity than Chi9602. Bioassays further showed that SNPC2 synergistically enhanced the nematicidal effect of B. thuringiensis YBT-020 preparation against C. elegans, with a reduced LC50 of 8.35 mg/mL and a shortened LT50 of 12.04 h. Immunofluorescence assays showed that SNPC2 had considerable delivery capacity to carry a large protein into C. elegans. Therefore, SNP2 can serve as an efficient nanocarrier for the delivery of macromolecular proteic biopesticides or drugs, indicating potential agricultural or biotechnological applications.

Keywords: Silica nanoparticles; Surface grafting; Chitinase; Nanocarrier; Biocontrol agent.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution