Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Volume 259, 2020, 127504

Influences of hexafluoropropylene oxide (HFPO) homologues on soil microbial communities

Yanchu Kea,1, Tianli Tonga,1, Jianfei Chena, Jun Huangb, Shuguang Xiea

State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.


Hexafluoropropylene oxide (HFPO) homologues, as emerging perfluoroalkyl substances (PFASs) to replace legacy PFASs, have wide applications in the organofluorine industry and have been detected in the global environment. However, it is still unclear what effect HFPO homologues will exert on microbial abundance, community structure and function. The objective of this study was to assess potential impacts of HFPO homologue acids on archaea, bacteria, and ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the soil environment. Grassland soil microcosms were supplemented with low (0.1 mg/kg) or high (10 mg/kg) dosages of dimer, trimer and tetramer acids of HFPO (HFPO-DA, HFPO-TA, and HFPO-TeA), respectively. The amendment of HFPO homologues acids initially decreased the abundance of archaea and bacteria but increased them in the later period. The addition of HFPO homologues acids raised AOA abundance but restrained AOB growth during the whole incubation. AOA and AOB community structures showed considerable variations. Potential nitrifying rate (PNR) showed an increase in the initial period followed by a decline in the later period. HFPO-DA had a lasting and suppressive effect on AOB and PNR even at a nearly environmental level. Overall, HFPO homologues with different carbon chain lengths had different impacts on soil microbial community and ammonia oxidation.

Keywords: Hexafluoropropylene oxide, Nitrification, Microbial community, Soil.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution