Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Vol. 19 (2), 2015, Pages: 469-478

Identification and characterization of 2-keto-3-deoxy-l-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: implications to l-rhamnose metabolism in archaea

Jungdon Bae, Suk Min Kim, Sun Bok Lee

Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang, 790-784, Korea.


We identified the non-phosphorylated l-rhamnose metabolic pathway (Rha_NMP) genes that are homologous to those in the thermoacidophilic archaeon Thermoplasma acidophilum in the genome of the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans. However, unlike previously known 2-keto-3-deoxy-l-rhamnonate (l-KDR) dehydrogenase (KDRDH) which belongs to the short chain dehydrogenase/reductase superfamily, the putative KDRDHs in S. thermosulfidooxidans (Sulth_3557) and T. acidophilum (Ta0749) belong to the medium chain dehydrogenase/reductase (MDR) superfamily. We demonstrated that Sulth_3559 and Sulth_3557 proteins from S. thermosulfidooxidans function as l-rhamnose dehydrogenase and KDRDH, respectively. Sulth_3557 protein is an NAD+-specific KDRDH with optimal temperature and pH of 50°C and 9.5, respectively. The Km and Vmax values for l-KDR were 2.0 mM and 12.8 U/mg, respectively. Sulth_3557 also showed weak 2,3-butanediol dehydrogenase activity. Phylogenetic analysis suggests that Sulth_3557 and its homologs form a new subfamily in the MDR superfamily. The results shown in this study imply that thermoacidophilic archaea metabolize l-rhamnose to pyruvate and l-lactate by using the MDR-family KDRDH similarly to that of the thermoacidophilic bacterium S. thermosulfidooxidans.

Keywords: 2-Keto-3-deoxy-l-rhamnonate dehydrogenase, Non-phosphorylated l-rhamnose pathway, Medium chain dehydrogenase/reductase, Sulfobacillus thermosulfidooxidans, Thermoplasma acidophilum.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution