3

 

Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Bioelectrochemistry
Volume 145, 2022, 108072

High current density via direct electron transfer by hyperthermophilic archaeon, Geoglobus acetivorans, in microbial electrolysis cells operated at 80°C

Aykut Kas, Yasemin Dilsad Yilmazel

Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.

Abstract

Utilization of hyperthermophilic electro-active microorganisms in microbial electrolysis cells (MECs) that are used for hydrogen production from organic wastes offers significant advantages, such as increased reaction rate and enhanced degradation of insoluble materials. However, only a limited number of hyperthermophilic bioelectrochemical systems have been investigated so far. This study is the first to illustrate hydrogen production in hyperthermophilic MECs with a maximum rate of 0.57 ± 0.06 m3 H2/m3d, where an iron reducing archaeon, Geoglobus acetivorans, was used as inoculum. In fact, this is the first study to report that G. acetivorans, as the fourth hyperthermophilic electro-active archaeon. In single chamber MECs operated at 80 °C with a set potential of 0.7 V, a peak current density of 1.53 ± 0.24 A/m2 has been attained and this is the highest record of current produced by pure culture hyperthermophilic microorganisms. Turnover cyclic voltammetry curve illustrated a sigmoidal shape (midpoint of −0.40 V vs. Ag/AgCl), and together with linear relation of scan rate and peak anodic current, proves the biofilm attachment to the anode and its capability of direct electron transfer. Along with simple substrate (acetate), G. acetivorans effectively utilized dark fermentation effluent for hydrogen production in MECs.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution