Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Colloids and Surfaces B: Biointerfaces
Volume 169, 2018, Pages: 195-205

Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds

Poverenov Elena, Klein Miri

Department of Food Quality and Safety, the Volcani Center, ARO, Rishon LeZion 7505101, Israel.


Different synthetic strategies for the formation of contact active antimicrobial materials utilizing covalent linkage of quaternary ammonium compounds (QACs) were reviewed. There is a demand to find methods that will prevent bacterial fouling without the release of antimicrobial agents, because biocides cause environment pollution and promote the development of bacteria resistance mechanisms. The contact active antimicrobial surfaces may provide a useful tool for this purpose. The covalent surface grafting of QACs seems to be a feasible and promising approach for the formation of safe and effective antimicrobial materials that could be utilized for medical devices, food industry, water treatment systems and other applications. This manuscript reviews covalent attachment of QACs to form contact active antimicrobial materials based on glass, metals, synthetic and natural polymers. The review emphasizes the description of different synthetic methods that are used for the covalent linkage. Direct covalent linkage of QACs to the material surfaces, a linkage via auxiliary nanoparticles (NPs), or spacers, controlled radical polymerization techniques and a linkage to pre-activated surfaces are discussed. The physico-chemical properties and biological activity of the modified surfaces are also described. This review does not cover non-covalent grafting of QACs and incorporation of QACs into a bulk material.

Graphical abstract

Keywords: Antimicrobial surfaces, Contact active, Quaternary ammonium compounds, Covalent linkage.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution