3

 

Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Composites Part B: Engineering
Volume 232, 2022, 109623

Dual-functional antimicrobial coating based on the combination of zwitterionic and quaternary ammonium cation from rosin acid

Chaoqi Chena, Zhaoshuang Lia, Xiangzhou Lia, Chuntao Kuanga, Xiubo Liua

College of Materials Science and Engineering, Central South University of Forestry & Technology, Hunan Province Key Laboratory of Materials Surface/Interface Science & Technology, Changsha, 410004, China.

Abstract

Treatment of implant-associated infection is becoming more challenging, especially when bacterial biofilms form on the surface of implants. To address the challenge of biofilm infection, developing dual-functional antimicrobial coatings (antimicrobial and antifouling) to combat bacterial biofilm infection are superior to those based on a single modality due to avoiding the adverse effects arising from the latter. In this work, we reported an effective dual-functional coating based on the use of synthetic terpolymers, which combined dopamine, zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and maleopimaric acid quaternary ammonium cation (MPA-N+). The modified surfaces were characterized by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), X-ray spectroscopy (XPS) and water contact angle measurements. The bactericidal efficacies of dual-functional coating were demonstrated by 1.00, 1.09 and 0.94 log reduction of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coliPseudomonas aeruginosa, respectively, and effectively inhibited pathogenic biofilm formation. Moreover, the dual-function coating reduced protein and platelet absorption, while showing minimal cytotoxicity to the mammalian cells. Notably, an in vivo implantation model showed that the dual-functional coating eradicated the pathogenic biofilm from the implants, preventing host tissue damage and inflammation. Taken together, this dual-functional coating displayed great therapeutic potential in treating the formidable clinic problems caused by pathogenic biofilm and the accompanying inflammation.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution