Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
mn

Site Visitors

blog tracking


 
Journal of Clinical Bioinformatics
2014

Clinical detection of human probiotics and human pathogenic bacteria by using a novel high-throughput platform based on next generation sequencing

Chih-Min Chiu, Feng-Mao Lin, Tzu-Hao Chang, Wei-Chih Huang, Chao Liang, Ting Yang, Wei-Yun Wu, Tzu-Ling Yang, Shun-Long Weng, Hsien-Da Huang

Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu, 300, Taiwan.

Abstract

Background

The human body plays host to a vast array of bacteria, found in oral cavities, skin, gastrointestinal tract and the vagina. Some bacteria are harmful while others are beneficial to the host. Despite the availability of many methods to identify bacteria, most of them are only applicable to specific and cultivable bacteria and are also tedious. Based on high throughput sequencing technology, this work derives 16S rRNA sequences of bacteria and analyzes probiotics and pathogens species.

Results

We constructed a database that recorded the species of probiotics and pathogens from literature, along with a modified Smith-Waterman algorithm for assigning the taxonomy of the sequenced 16S rRNA sequences. We also constructed a bacteria disease risk model for seven diseases based on 98 samples. Applicability of the proposed platform is demonstrated by collecting the microbiome in human gut of 13 samples.

Conclusions

The proposed platform provides a relatively easy means of identifying a certain amount of bacteria and their species (including uncultivable pathogens) for clinical microbiology applications. That is, detecting how probiotics and pathogens inhabit humans and how affect their health can significantly contribute to develop a diagnosis and treatment method.

Keywords:


 

 

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution