Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Biodegradation
Vol. xx, No.
xx, 2010; Pages: xx - xx

Isolation of a Pseudomonas aeruginosa strain from soil that can degrade polyurethane diol

Mukherjee K, Tribedi P, Chowdhury A, Ray T, Joardar A, Giri S, Sil AK

Department of Microbiology, University of Calcutta, 35 B.C. Road, Kolkata, 700019, India.

Abstract

Polyurethane diol (PUR-diol), a synthetic polymer, is widely used as a modifier for water-soluble resins and emulsions in wood appliances and auto coatings. Non-biodegradability of polyurethanes (PUR) and PUR-based materials poses a threat to environment that has led scientists to isolate microbes capable of degrading PUR. However, the bio-degradation of PUR-diol has not yet been reported. In this study, we report isolation of a soil bacterium that can survive using PUR-diol as sole carbon source. PUR-diol degradation by the organism was confirmed by thin layer chromatographic analysis of the conditioned medium obtained after the growth wherein a significant reduction of PUR-diol was observed compared to non-inoculated medium. To quantify the PUR-diol degradation, a sensitive assay based on High Performance Thin Layer Chromatography has been developed that showed 32% degradation of PUR-diol by the organism in 10 days. Degradation kinetics showed the maximal depletion of PUR-diol during logarithmic growth of the organism indicating a direct relation between the growth and PUR-diol degradation. Mutagenic study and GC-MS analysis revealed that esterase activity is involved in this degradation event. The ribotyping and metabolic fingerprinting analysis showed that this organism is a strain of Pseudomonous aeruginosa (P. aeruginosa). It has also been observed that this strain is able to degrade Impranil DLN, a variety of commercially available PUR. Therefore this study identifies a new bacterium from soil that has the potential to reduce PUR-related waste burden and adds a new facet to diverse functional activities of P. aeruginosa.

Keywords:Polyurethane diol; Bioremediation; Pseudomonas;Pseudomonous aeruginosa.


 

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution