Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Recent Pat Biotechnol.
Vol.6, No.1, 2012; Pages:
2 - 12.

Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections.

Romero M, Acuña L, Otero A.

Departamento de Microbiologia y Parasitologia, Facultad de Biologia, Edificio CIBUS, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.


Abstract

Numerous bacterial functions, such as virulence and biofilm formation, are controlled by a cell densitydependent communication mechanism known as Quorum Sensing (QS), in which small diffusible molecules are released, allowing bacteria to coordinate their behavior once a minimal effective quorum has been reached. The interference with these signaling systems, also known as Quorum Quenching (QQ), represents a promising strategy to tackle bacterial infections. The growing interest in this approach is reflected by the increasing number of patents within the field (45 up to now), especially in the last few years, as shown by patent applications published since 2009. The fact that biofilm formation is also controlled by QS systems expands the application of QQ to clinically-relevant biofilms such as those responsible for periodontal disease. Moreover, since biofilms increase bacterial resistance to antimicrobials, QQ could represent a new way to fight some of the most recurrent human pathogens, such as nosocomial multiresistant strains, and this deserves further exploration, especially through more proofs of concept. In this article we review the best known QS and QQ systems to date and we describe recent patents on the interference with this type of bacterial communication.

 

Keywords:


Corresponding author:

E-mail:

 

 

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution