3

Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Heliyon
Volume 7 (1), 2021, e05889

Modeling the effects of farming management practices on soil organic carbon stock under two tillage practices in a semi-arid region, Morocco

Ibtissame Lembaida,b, Rachid Moussadekb, Rachid Mrabetb, Ahmed Douaikb, Ahmed Bouhaoussa

Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.

Abstract

Conflicts often exist between the use of pesticides for public health protection and organic farming. A prominent example is the use of insecticides for mosquito control in rice fields designated for organic farming. Rice fields, with static water and other conducive conditions, are favorable mosquito habitats. Best management practices are urgently needed to ensure the integrity of organic farming while addressing the need for public health protection. In this study, we evaluated aerial ultra-low-volume (ULV) applications of two classes of mosquito adulticides, pyrethrins and organophosphates, and their deposition and residues on rice plants throughout an active growing season in the Sacramento Valley of California. Frequent applications of pyrethrin synergized with piperonyl butoxide (PBO) and rotating applications of synergized pyrethrins and naled, an organophosphate, were carried out on two large blocks of rice fields. Aerial ULV application of either synergized pyrethrins or naled was able to generate uniform droplets above the fields with high efficacy for mosquito control. Rice leaf samples were collected before and after a subset of applications, and rice grains were sampled at harvest. Frequent applications of synergized pyrethrins resulted in some accumulation of the synergist PBO on rice leaves, but pyrethrins and naled dissipated rapidly from the leaves after each application with no noticeable accumulation over repeated applications. At harvest, no detectable residues of the pesticides or PBO were found in the rice grains. The absence of pesticide residues in the rice grains at harvest suggested that the ULV aerial application led to deposition of only very low levels of residues on rice plants during the growing season. When coupled with the short persistence and/or poor mobility of the insecticides, such applications resulted in negligible pesticide residues in rice grains.

Keywords: Soil organic carbon, DNDC model, Farming management practices, No-tillage system, Climate change.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution