Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Soil Biology and Biochemistry
Vol. 57, No. xx, 2013; Pages: 794–802


Effects of fertilization with urban and agricultural organic wastes in a field trial Waste imprint on soil microbial activity

Pernille Hasse Busk Poulsen, Jakob Magid, Jesper Luxhi, Andreas de Neergaard

Department of Agriculture and Ecology, Plant and Soil Science, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.

Abstract

In the past decades a significant change in composition of urban organic waste products has occurred in many first world countries, due to cleaner technologies as well as outsourcing of heavy industries. However, the societal perception of organic urban waste has become increasingly negative, leading to widespread advocacy of incineration. Therefore we established the ‘CRUCIAL’ long-term field trial in 2003, with the rationale that by approaching the known limits for a number of heavy metals below which no profound disturbance should be observed on key soil ecological functions, it should be possible to discern if some of the many unknown components in the composite urban waste as well as agriculturally based fertilizers have measurable impacts. The following treatments were established: human urine, sewage sludge (normal N-level and accelerated level aiming at three times normal N-level), degassed and subsequently composted organic municipal waste (normal and accelerated level), deep litter, cattle slurry, cattle manure (accelerated level), NPK fertilizer, unfertilized but with clover undersown and an unfertilized control. After 4 years the soil organic matter (SOM) C content, basal CO2 respiration and soil microbial biomass (SMB) C was significantly affected by treatments. All soils having received organic fertilizer had higher SMB C than those with no added fertilizer (unfertilized and unfertilized with clover undersown) and inorganic fertilizer. The treatment effect on qCO2 (CO2/SMB C) was not significant, but the unfertilized treatments showed the highest values. Treatments with accelerated levels of composted household waste and sewage sludge had the highest number of colony forming heterotrophic bacteria. Sole carbon source utilization in EcoPlates indicated a very robust microbial community in the treatments. Cumulative input of heavy metals was less than that required for reaching the heavy metal ecotoxicological limits, even after accelerated loading with sewage sludge corresponding to approximately 55 years of normal application. This could indicate that it is possible use organic urban waste for an extended period on a given site, without compromising soil functioning as long as ecotoxicological guidelines for heavy metal content are observed.

Keywords:Microbial activity; Field trial; Sludge; Compost; Organic waste.


 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution