Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Bioprocess and Biosystems Engineering
36, No. 1, 2013; Pages: 57 - 68

Process optimization of xylanase production using cheap solid substrate by Trichoderma reesei SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF

Sanjay Kar, Samiran Sona Gauri, Arpan Das, Arijit Jana, Chiranjit Maity, Asish Mandal, Pradeep K. Das Mohapatra, Bikash R. Pati, Keshab C. Mondal

Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India.


This study aimed to assess the variability in respect of titer and properties of xylanase from Trichoderma reesei SAF3 under both solid-state and submerged fermentation. SSF was initially optimized with different agro-residues and among them wheat bran was found to be the best substrate that favored maximum xylanase production of 219 U (gws)−1 at 96 h of incubation. The mycelial stage of the fungi and intracellular accumulation of Ca++ and Mg++ induced maximum enzyme synthesis. Inoculum level of 10 × 106 spores 5 g−1 of dry solid substrate and water activity of 0.6 were found to be optimum for xylanase production under SSF. Further optimization was made using a Box-Behnken design under response surface methodology. The optimal cultivation conditions predicted from canonical analysis of this model were incubation time (A) = 96–99 h, inoculum concentration (B) = 10 × 106 spores 5 g−1 of dry substrate, solid substrate concentration (C) = 10–12 g flask−1, initial moisture level (D) = 10 mL flask−1 (equivalent to aw = 0.55) and the level of xylanase was 299.7 U (gws)−1. Subsequent verification of these levels agreed (97 % similar) with model predictions. Maximum amount of xylanase was recovered with water (6:1, v/w) and under shaking condition (125 rpm). Purified xylanase from SSF showed better stability in salt and pH, was catalytically and thermodynamically more efficient over enzyme from SmF, though molecular weight of both enzymes was identical (53.8 kDa).

Keywords: T. reesei; SSF; SmF; Xylanase; Kinetic properties



Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution