3
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Enzyme and Microbial Technology
Volume 147, 2021, 109780

Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups

Balaji Venkatesagowdaa, Robert F.H. Dekkera,b

Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada.

Abstract

Lignin is an abundant natural plant aromatic biopolymer containing various functional groups that can be exploited for activating lignin for potential commercial applications. Applications are hindered due to the presence of a high content of methyl/methoxyl groups that affects reactiveness. Various chemical and enzymatic approaches have been investigated to increase the functionality in transforming lignin. Among these is demethylation/demethoxylation, which increases the potential numbers of vicinal hydroxyl groups for applications as phenol-formaldehyde resins. Although the chemical route to lignin demethylation is well-studied, the biological route is still poorly explored. Bacteria and fungi have the ability to demethylate lignin and lignin-related compounds. Considering that appropriate microorganisms possess the biochemical machinery to demethylate lignin by cleaving O-methyl groups liberating methanol, and modify lignin by increasing the vicinal diol content that allows lignin to substitute for phenol in organic polymer syntheses. Certain bacteria through the actions of specific O-demethylases can modify various lignin-related compounds generating vicinal diols and liberating methanol or formaldehyde as end-products. The enzymes include: cytochrome P450-aryl-O-demethylase, monooxygenase, veratrate 3-O-demethylase, DDVA O-demethylase (LigX; lignin-related biphenyl 5,5′-dehydrodivanillate (DDVA)), vanillate O-demethylase, syringate O-demethylase, and tetrahydrofolate-dependent-O-demethylase. Although, the fungal counterparts have not been investigated in depth as in bacteria, O-demethylases, nevertheless, have been reported in demethylating various lignin substrates providing evidence of a fungal enzyme system. Few fungi appear to have the ability to secrete O-demethylases. The fungi can mediate lignin demethylation enzymatically (laccase, lignin peroxidase, manganese peroxidase, O-demethylase), or non-enzymatically in brown-rot fungi through the Fenton reaction. This review discusses details on the aspects of microbial (bacterial and fungal) demethylation of lignins and lignin-model compounds and provides evidence of enzymes identified as specific O-demethylases involved in demethylation.

Keywords: Wood-rot fungi, O-demethylase, Pyrocatechol, Colloidal lignin particles, Lignin model compounds, Lignin- based phenol- formaldehyde resins.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution