Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Applied Microbiology and Biotechnology
Vol.
94, No. 4, 2012; Pages: 917 - 930

Agar degradation by microorganisms and agar-degrading enzymes

Won-Jae Chi, Yong-Keun Chang, Soon-Kwang Hong

Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, 449-728, Korea.

Abstract

Agar is a mixture of heterogeneous galactans, mainly composed of 3,6-anhydro-l-galactoses (or l-galactose-6-sulfates) d-galactoses and l-galactoses (routinely in the forms of 3,6-anhydro-l-galactoses or l-galactose-6-sulfates) alternately linked by β-(1,4) and α-(1,3) linkages. It is a major component of the cell walls of red algae and has been used in a variety of laboratory and industrial applications, owing to its jellifying properties. Many microorganisms that can hydrolyze and metabolize agar as a carbon and energy source have been identified in seawater and marine sediments. Agarolytic microorganisms commonly produce agarases, which catalyze the hydrolysis of agar. Numerous agarases have been identified in microorganisms of various genera. They are classified according to their cleavage pattern into three types—α-agarase, β-agarase, and β-porphyranase. Although, in a broad sense, many other agarases are involved in complete hydrolysis of agar, most of those identified are β-agarases. In this article we review agarolytic microorganisms and their agar-hydrolyzing systems, covering β-agarases as well as α-agarases, α-neoagarobiose hydrolases, and β-porphyranases, with emphasis on the recent discoveries. We also present an overview of the biochemical and structural characteristics of the various types of agarases. Further, we summarize and compare the agar-hydrolyzing systems of two specific microorganisms: Gram-negative Saccharophagus degradans 2–40 and Gram-positive Streptomyces coelicolorA3(2). We conclude with a brief discussion of the importance of agarases and their possible future application in producing oligosaccharides with various nutraceutical activities and in sustainably generating stock chemicals for biorefinement and bioenergy.

Keywords: Agar, Agarose, Porphyran, Agarase, Porphyranase, Agar degradation


 

 

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution