Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Algal Research
Vol. 30 , 20
18, Pages: 113-120

Fluorescence activated cell-sorting principles and applications in microalgal biotechnology

Guo-Qiang Chen, Xiao-Ran Jiang

MOE Key Lab on Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.

Abstract

Industrial biotechnology aims to produce bulk chemicals including polymeric materials and biofuels based on bioprocessing sustainable agriculture products such as starch, fatty acids and/or cellulose. However, traditional bioprocesses require bioreactors made of stainless steel, complicated sterilization, difficult and expensive separation procedures as well as well-trained engineers that are able to conduct bioprocessing under sterile conditions, reducing the competitiveness of the bio-products. Amid the continuous low petroleum price, next generation industrial biotechnology (NGIB) allows bioprocessing to be conducted under unsterile (open) conditions using ceramic, cement or plastic bioreactors in a continuous way, it should be an energy, water and substrate saving technology with convenient operation procedure. NGIB also requires less capital investment and reduces demand on highly trained engineers. The foundation for the simplified NGIB is microorganisms that resist contaminations by other microbes, one of the examples is rapid growing halophilic bacteria inoculated under high salt concentration and alkali pH. They have been engineered to produce multiple products in various scales.

Graphical abstract

 

 
 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution