Heavy metal levels in the sediments of four Dar es Salaam mangroves
Accumulation in, and effect on the morphology of the periwinkle,
Littoraria scabra (Mollusca: Gastropoda)

Hans De Wolf a,*, S.A. Ulomi b, T. Backeljau c, H.B. Pratap b, R. Blust a

a Ecophysiology and Biochemistry Group, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium
b Department of Zoology and Marine Biology, University of Dar es Salaam, Dar es Salaam, Tanzania
c Malacology Section, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium

Received 1 February 2000; accepted 15 November 2000

Abstract

Heavy metals were determined in the soft tissue and shells of the littorinid, *Littoraria scabra*, and in the sediments of four mangrove areas along the Dar es Salaam coastline where *L. scabra* was collected. Several metals accumulate, preferentially in the animals’ soft body parts, but do not seem to affect the shell morphology of this species. Sediment-metal levels, measured in the direct vicinity of Dar es Salaam have increased dramatically over the last decade. Nonetheless, these levels are still lower compared to metal-sediment levels reported in polluted European and American estuaries. Soft-tissue metal levels detected in *L. scabra* are, nevertheless, with the exception of Cr and Zn, comparable to metal levels reported in other gastropod species. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Heavy metals; Mangrove; *Littoraria Scabra*; Dar es Salaam

1. Introduction

Like many other developing countries, Tanzania, one of the less industrialised nations on the Western Coast of the Indian Ocean, is experiencing increasing impacts of environmental degradation. Tanzania has a few industrial centres, of which Dar es Salaam is the most important one. It is not only the major industrial, but it is also the largest, city of the country (Machiwa, 1992). Its population and level of industrial activities have steadily increased during the past three decades, with vast open spaces being converted into residential or industrial areas (Machiwa, 1992). This increased development has resulted in an uncontrolled disposal of domestic and industrial wastes (Ak’habuhaya and Lodenius, 1988; Machiwa, 1992). Waste is seldom treated and, as such, transported towards the coastal area by a series of rivers (Mgana and Mahongo, 1997). Msimbazi river, for instance, which flows through the Dar es Salaam industrial area, has an average sewage and industrial effluents rate of 256 m³/h with peak values of 606 m³/h, just before it enters the Indian Ocean (Ak’habuhaya and Lodenius, 1988). Pollutants such as PAHs, PCBs, and heavy metals, which are drained from the city towards the Ocean, tend to accumulate in the coastal sediments (Machiwa, 1992), where they pose a threat to the intertidal communities. Of special interest are the mangrove forests, located along the Tanzanian coast, as mangroves are one of the most productive and biodiverse wetlands on earth. The Tanzanian mangroves are not only affected by the pollution drain, but they are also cleared by man in order to obtain land for salt extraction (Ak’habuhaya and Lodenius, 1988). Thus, despite its ecological importance, the Tanzanian mangrove ecosystem is continuously being degraded and depleted (Ak’habuhaya and Lodenius, 1988).

Several mangrove areas are located along the Dar es Salaam coastline (Fig. 1). Msimbazi mangrove receives water from the Msimbazi river and is therefore likely to be a polluted area (Fig. 1). Mtoni mangrove is located along the Dar es Salaam harbour channel (Fig 1). Also, this mangrove is likely to be polluted due to the heavy traffic of fishing boats and ferries, while some municipal outflows are directly discharged in this area (Machiwa, 1992). Finally, Kunduchi and Mbweni mangroves are situated, respectively, 20 and
40 km north from the city centre (Fig. 1). With the exception of a few hotels located at Kunduchi, there is virtually no source of pollution visible at these mangrove areas.

Despite efforts undertaken to evaluate pollution levels in and around the Dar es Salaam area (Ak’habuhaya and Lodenius, 1988; Machiwa, 1992), very few studies have considered the accumulation of pollutants in, and the effect they have on the local marine fauna and flora. The mangrove areas along the coast of Dar es Salaam, each affected by different pollution levels, thus provide an excellent setting to test for such factors.

In this study, we investigate the morphological population structure of the dominant mangrove-dwelling periwinkle, *Littoraria scabra*, collected at all four mangrove areas, while we determine and compare sediment heavy-metal concentrations with each other and with heavy-metal concentrations measured in the soft body parts, as well as in the shells of *L. scabra*. In addition, a comparison of heavy-metal levels measured in the 1988 Msimbazi sediments (Ak’habuhaya and Lodenius, 1988) enables us to evaluate any changes in heavy-metal pollution around Dar es Salaam harbour during the past decade.

2. Material and methods

On 20–22 December 1998, *L. scabra* was collected at four similar mangrove sites along the Dar es Salaam coastline. These sites included, in order of expected pollution level: Msimbazi, Mtonoi, Kunduchi, and Mbweni (Fig. 1).
A total of 80 specimens were collected, 20 at each site, and were morphometrically characterised. Shell height (HS) and width (WS), aperture height (HA) and width (WA), and shell-top height (HT) were measured to the nearest 0.1 mm using calipers, while the animals were sexed, based on the presence/absence of a penis, and weighed with [total weight (TW)] and without their shell [body weight (BW)].

An additional 120 specimens collected at the same sites were used for heavy-metal analysis. Shells and corresponding soft body parts were separated and were dried for 24 h at 60°C. Individual shell and soft-tissue samples were subsequently digested in a microwave oven, adding a mixture (5:1) of nitric acid (70%) and peroxic acid (30%). The digested samples were stored at 4°C until further analysis.

At each site, two sediment samples were taken, using a 5-cm \(\varnothing \) hand core, to a depth of 10 cm. Wet sediment samples were centrifuged at 1000 rpm for 30 min. The supernatants were removed and the sediment particles were dried for 24 h at 60°C. Sediment samples were put in a Teflon bomb and digested in a microwave, adding a mixture (1:3) of nitric acid (70%) and HCl (37%), following the protocol described by Blust et al. (1988). After digestion, the solution was filtered through a 0.45-\(\mu \)m polyethersulfone-membrane filter, which was soaked for a few minutes in nitric acid (5%).

Silver, aluminium, arsenic, cadmium, cobalt, chromium, copper, iron, manganese, nickel, lead, strontium, and zinc were measured in the sediment, soft body parts, and shell samples by means of inductively coupled plasma atomic emission spectroscopy (ICP-AES), using a Varian Liberty Series II spectrophotometer. Analytical efficiency was checked using standard reference material (\textit{Mytilus edulis}, CRM 278R) from the Community Bureau of Reference (BCR), digested and analysed in the same way as the samples (De Wit and Blust, 1998). The detection limits of

<table>
<thead>
<tr>
<th>Element</th>
<th>DL of ICP-AES using a V-groove nebulizer ((\mu)g/l)</th>
<th>% Recovery of the reference sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>0.2</td>
<td>106.74</td>
</tr>
<tr>
<td>Co</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>0.5</td>
<td>88.31</td>
</tr>
<tr>
<td>Fe</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.05</td>
<td>91.98</td>
</tr>
<tr>
<td>Ni</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>1</td>
<td>114.28</td>
</tr>
<tr>
<td>Sr</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>0.1</td>
<td>97.19</td>
</tr>
</tbody>
</table>

Table 1
Detection limits (DL) of ICP-AES in the determination of metals in the sediment, soft tissue, and recovery percentage of some of the elements, obtained by comparison with available standard reference material concentrations.

Table 2
Results of a two-way MANOVA, contrasting the random factor site with the fixed factor site.

Table 3
Results of the post hoc Sheffe \(\acute { \text{t} } \) tests for interpopulational comparisons of morphological shell variability.
the ICP-AES heavy-metal determination and recovery percentages are given in Table 1.

Morphometric patterns were investigated by means of a two-way multivariate analysis of variance (MANOVA), contrasting the fixed factor sex and the random factor site. Interpopulation differences were further investigated using a post hoc Sheffe test.

Possible differences between heavy-metal concentrations in the sediments, shells, and soft tissues, expressed as microgram per gram dry weight, were investigated using a Kruskal–Wallis single factor ANOVA.

The heavy-metal differentiation among the different mangroves was further analysed by means of a correspondence analysis executed with the NTSYS v. 1.80 software (Rohlf, 1993). With this method, the ordinates of the mangroves are taken on the basis of their sediment-metal distribution and of the metal distribution in the shells and soft tissues of *L. scabra*.

All statistical analyses, except for the correspondence analysis, were performed using the software package, Statistica v. 5.0 (Statsoft 1995).

3. Results

The results of the two-way MANOVA are summarised in Table 2. No sexual dimorphism is found, as only the factor site explains a significant part of the variation (Table 2). Morphological differences between sampling sites are almost entirely attributable to morphological differences between two sampling sites, Mtoni and Mbweni (Table 3). *L. scabra* collected from Mbweni weighs less and has a smaller and narrower aperture size with a more elongated shell compared to *L. scabra* collected at Mtoni (Table 3, Fig. 2).

For the heavy-metal sediment analysis, all elements, except for As and Cd, fell within the detection limits and could be measured in the sediments of at least one sampling site (Table 1, Fig. 3). Of these elements, only Ag, Fe, Mn, and Zn differed significantly between the sampling sites. Fe, Mn, and Zn concentrations decreased from Msimbazi to Mbweni (i.e., from a polluted to a clean area) (Figs. 3 and 4), whereas Ag did not reveal a clear geographical pattern (Figs. 3 and 4). All other elements were either only detected at Msimbazi (i.e., Cu and Pb) (Table 4) or revealed a trend of decreasing concentration from Msimbazi to Mbweni (i.e., Al, Co, Cr, Ni, and Sr) (Fig. 3). With the exception of Mn and Ni, the concentrations of all metals increased in the Msimbazi sediments between 1988 and 1999 (Fig. 3). This increase is most obvious for Al (from 530 to 6375 μg/g dry weight), Fe (from 630 to 3539 μg/g dry weight), and Cr (from 2.7 to 10.1 μg/g dry weight).

With respect to the heavy-metal soft-tissue analysis, all elements, except for Al, fell within the detection limits and were present in at least one site (Tables 1 and 4, Fig. 4). Significant sampling-site differences were observed for Cu, Mn, Sr, and Zn (Table 4). Of these elements Cu, Mn, and Zn decreased from Msimbazi to Mbweni (Fig. 4). Other elements revealed no clear geographical pattern (i.e., Ag, Cd, Cr, and Fe) (Fig. 4), were only detected in Msimbazi (i.e., As, Co, Ni, Pb) (Table 4), or revealed a trend of decreasing concentration towards the less polluted sites (i.e., Sr) (Fig. 4).

Except for Sr, all other metals could either not be detected in the shells of *L. scabra* (i.e., Ag, Al, As, Cd, Co, Cr, and Ni) (Table 4) or occurred at much lower
concentrations compared to those measured in the soft tissue of *L. scabra* (Fig. 4). Only the shell Mn concentrations differed significantly between the different sites, decreasing from Msimbazi towards Mbweni (Table 4, Fig. 4). The shell concentrations of other elements did not reveal a geographical pattern (i.e., Cu, Fe, Sr, and Zn) (Fig. 4) or were only detected at Msimbazi (i.e., Pb) (Table 4).

The results of a correspondence analysis are graphically summarised in Fig. 5. The first axis is the most important one, explaining 91.1% of the total variation. It is mainly an expression of the Al, Fe, and Zn sediment measurements and is used to discriminate Msimbazi from the remaining sites. It indicates that these metals occur at the highest concentrations in Msimbazi, whereas the angle between the vectors illustrates that the three metals show a similar pattern of occurrence in the sediments of the four mangrove sites. Other important discriminating variables include Fe, Zn, and Sr, which were measured.
in the soft tissues, and Sr, which was measured in the shells of *L. scabra*. It reveals that the sediment and soft-tissue heavy-metal profiles of both Fe and Zn do not correspond well, whereas the tissue Fe and Zn measurements show a similar pattern of occurrence. Sr measured in the shells does not correspond well with Sr measured in the soft tissue of *L. scabra*, as illustrated by the opposing positioning of both vectors. Finally, the second axis is far less informative (6.3%), and its interpretation is therefore less straightforward.

4. Discussion

As was expected, Msimbazi mangrove is, with the exception of Ag, the most heavy-metal-polluted spot. Although the concentrations of several metals, except for Mn and Ni, have increased at this site during the last decade, sediment concentrations of Cd, Cu, and Pb, for instance, measured in industrialised estuaries in Europe and America, are still higher (Nolting et al., 1989; Benoit et al., 1994; Comber et al., 1995; Bayens, 1998). Nevertheless, comparable metal levels might be reached in Mbweni, with animals collected at the latter site being more elongated, having a smaller and narrower aperture, and weighing less. Shell variability in *L. scabra* is rather rare, and if it occurs, it is likely to be associated with habitat differences (Reid, 1986). Since Mbweni and Mtoni are seemingly comparable in the soft tissues, and Sr, which was measured in the shells of *L. scabra*. It reveals that the sediment and soft-tissue heavy-metal profiles of both Fe and Zn do not correspond well, whereas the tissue Fe and Zn measurements show a similar pattern of occurrence. Sr measured in the shells does not correspond well with Sr measured in the soft tissue of *L. scabra*, as illustrated by the opposing positioning of both vectors. Finally, the second axis is far less informative (6.3%), and its interpretation is therefore less straightforward.

4. Discussion

As was expected, Msimbazi mangrove is, with the exception of Ag, the most heavy-metal-polluted spot. Although the concentrations of several metals, except for Mn and Ni, have increased at this site during the last decade, sediment concentrations of Cd, Cu, and Pb, for instance, measured in industrialised estuaries in Europe and America, are still higher (Nolting et al., 1989; Benoit et al., 1994; Comber et al., 1995; Bayens, 1998). Nevertheless, comparable metal levels might be reached in Mbweni, with animals collected at the latter site being more elongated, having a smaller and narrower aperture, and weighing less. Shell variability in *L. scabra* is rather rare, and if it occurs, it is likely to be associated with habitat differences (Reid, 1986). Since Mbweni and Mtoni are seemingly comparable in the soft tissues, and Sr, which was measured in the shells of *L. scabra*. It reveals that the sediment and soft-tissue heavy-metal profiles of both Fe and Zn do not correspond well, whereas the tissue Fe and Zn measurements show a similar pattern of occurrence. Sr measured in the shells does not correspond well with Sr measured in the soft tissue of *L. scabra*, as illustrated by the opposing positioning of both vectors. Finally, the second axis is far less informative (6.3%), and its interpretation is therefore less straightforward.

Table 4

<table>
<thead>
<tr>
<th>Element</th>
<th>Sediment</th>
<th>Soft tissue</th>
<th>Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>.0460</td>
<td>.7212</td>
<td>n.a.</td>
</tr>
<tr>
<td>Al</td>
<td>.2615</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>As</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cd</td>
<td>n.a.</td>
<td>.2330</td>
<td>n.a.</td>
</tr>
<tr>
<td>Co</td>
<td>.0719</td>
<td>–</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cr</td>
<td>.2615</td>
<td>.0685</td>
<td>n.a.</td>
</tr>
<tr>
<td>Cu</td>
<td>–</td>
<td>.0001</td>
<td>.0599</td>
</tr>
<tr>
<td>Fe</td>
<td>.0460</td>
<td>.2615</td>
<td>.2847</td>
</tr>
<tr>
<td>Mn</td>
<td>.0460</td>
<td>.0001</td>
<td>.0001</td>
</tr>
<tr>
<td>Ni</td>
<td>.1116</td>
<td>–</td>
<td>n.a.</td>
</tr>
<tr>
<td>Pb</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sr</td>
<td>.2615</td>
<td>.0004</td>
<td>.2341</td>
</tr>
<tr>
<td>Zn</td>
<td>.0460</td>
<td>.0065</td>
<td>.1042</td>
</tr>
</tbody>
</table>

n.a., nonavailable, element that fell below our detection limits; (–) element measured in one population only (i.e., Msimbazi).

Fig. 5

Graphical representation of the results of a correspondence analysis.
mangrove habitats that differ in metal pollution, it might be tempting to attribute the observed morphological differences to differences in heavy metal or other types of pollution. However, this seems rather unlikely, as (1) Msimbazi is clearly the most polluted spot, but L. scabra does not differ morphologically (i.e., shell measurements) from those at the Mbweni population, and (2) increased pollution by heavy metals would probably result in a growth rate and/or survival rate decrease (Widdows et al., 1995), shifting the more polluted animals towards smaller sizes, which is not the case here, as the smallest animals were collected at the less polluted site. Other factors besides pollution by heavy metals must be invoked to explain these results and will be analyzed in the future. Care should, however, be taken with the current morphological results as only 20 individuals were analysed per population.

Based upon the increase in metal contamination levels over the last 10 years, it seems that pollution by heavy metals is rapidly increasing around the Dar es Salaam area. This increase is related to the rapid and uncontrolled industrial development that has been pursued without specific provision for handling the environmental pollution that is related to this industrial development (Mgana and Mahongo, 1997). Despite the currently relative low levels of heavy metals found in the sediments and soft body parts of L. scabra collected around the Dar es Salaam area, caution is necessary, and steps should be undertaken in order to control this pollution trend and ensure the protection of the biodiverse mangrove Tanzanian aquatic ecosystem.

Acknowledgments

Special thanks to D.G. Reid from the Natural History Museum of London, who helped us with the determination of the periwinkle samples, H. Van Paeschen who provided the artwork, and an anonymous referee who helped to improve the manuscript. This research was supported by the VLIR Institutional Cooperation with the University of Dar es Salaam (project “Health Status of Aquatic Organisms in Tanzania”) and by a RAFO project under the contract number RAFO/1 DEWOH KP98. H.D.W. is a Postdoctoral Fellow of the Fund for Scientific Research, Flanders, Belgium (F.W.O.).

References

Krolak E. Concentration of heavy metals in the snails Lymnaea (Radix) peregra (O.F. Mull) and Lymnaea stagnalis (L.) occurring in rivers near Siedlce town. Pol Arch Hydrobiol 1998;45:553–63.