Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Advances in Applied Microbiology
Vol. 113, 2020, Pages: 1–56

Gaps in the assortment of rapid assays for microorganisms of interest to the dairy industry

JohnO'Gradya, Ultan Croninb, Joseph Tierneyc, Anna V.Piterinaa, ElaineO’Mearab, Martin G., Wilkinsonb

Dairy Processing Technology Centre, University of Limerick, Limerick, Ireland


This review presents the results of a study into the offering of rapid microbial detection assays to the Irish dairy industry. At the outset, a consultation process was undertaken whereby key stakeholders were asked to compile a list of the key microorganisms of interest to the sector. The resultant list comprises 19 organisms/groups of organisms divided into five categories: single pathogenic species (Cronobacter sakazakii, Escherichia coli and Listeria monocytogenes); genera containing pathogenic species (Bacillus, Clostridium, Listeria, Salmonella; Staphylococcus); broad taxonomic groupings (Coliforms, Enterobacteriaceae, fecal Streptococci, sulfite reducing bacteria/sulfite reducing Clostridia [SRBs/SRCs], yeasts and molds); organisms displaying certain growth preferences or resistance as regards temperature (endospores, psychrotrophs, thermodurics, thermophiles); indicators of quality (total plate count, Pseudomonas spp.). A survey of the rapid assays commercially available for the 19 organisms/groups of organisms was conducted. A wide disparity between the number of rapid tests available was found. Four categories were used to summarize the availability of rapid assays per organism/group of organisms: high coverage (> 15 assays available); medium coverage (5–15 assays available); low coverage (< 5 assays available); no coverage (0 assays available). Generally, species or genera containing pathogens, whose presence is regulated-for, tend to have a good selection of commercially available rapid assays for their detection, whereas groups composed of heterogenous or even undefined genera of mainly spoilage organisms tend to be “low coverage” or “no coverage.” Organisms/groups of organisms with “low coverage” by rapid assays include: Clostridium spp.; fecal Streptococci; and Pseudomonas spp. Those with “no coverage” by rapid assays include: endospores; psychrotrophs; SRB/SRCs; thermodurics; and thermophiles. An important question is: why have manufacturers of rapid microbiological assays failed to respond to the necessity for rapid methods for these organisms/groups of organisms? The review offers explanations, ranging from the technical difficulty involved in detecting as broad a group as the thermodurics, which covers the spores of multiple sporeforming genera as well at least six genera of mesophilic nonsporeformers, to the taxonomically controversial issue as to what constitutes a fecal Streptococcus or SRBs/SRCs. We review two problematic areas for assay developers: validation/certification and the nature of dairy food matrices. Development and implementation of rapid alternative test methods for the dairy industry is influenced by regulations relating to both the microbiological quality standards and the criteria alternative methods must meet to qualify as acceptable test methods. However, the gap between the certification of developer's test systems as valid alternative methods in only a handful of representative matrices, and the requirement of dairy industries to verify the performance of alternative test systems in an extensive and diverse range of dairy matrices needs to be bridged before alternative methods can be widely accepted and adopted in the dairy industry. This study concludes that many important dairy matrices have effectively been ignored by assay developers.

Keywords: Dairy microbiology, Detection, Food safety, Rapid methods, Dairy food matrices, Assay validation

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution