Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Chemosphere
Volume 252, 2020, 126622

Fast-stimulating bioremediation of macro crude oil in soils using matching Fenton pre-oxidation

Jinlan Xua,b,c, Juan Dua,b,c, Lu Lia,b,c, Qiuju Zhanga,b,c, Ziwei Chena,b,c

School of Environmental and Municipal Engineering, Xian University of Architecture and Technology, 710055, Shaanxi, Xian, China.

Abstract

This study aims at exploring the mechanism of fast-stimulating bioremediation of macro crude oil using matching Fenton pre-oxidation. The 80-day biodegradation experiment for soil S1 and S2, containing macro crude oil: C19C29 and C17C29 respectively, was conducted after Fenton pre-oxidation with three concentrations of H2O2 (225 mM, 450 mM, and 900 mM). Experimental results indicated that the bioremediation efficiency of macro crude oil was up to 57.1% (8853 mg/kg, S1) and 64.4% (11,719 mg/kg, S2) for 80-day fast-stimulating bioremediation using matching Fenton pre-oxidation (450 mM H2O2), which was 1.82.6 times that (S1: 22.237.1%; S2: 36.139.6%) for slow-stimulating bioremediation using un-matching Fenton pre-oxidation. Furthermore, the high-throughput analysis revealed that genera Sedimentibacter, Caenispirillum, and Brevundimonas became the dominant bacteria after matching Fenton pre-oxidation. Meanwhile, the highest logarithmic growth rate of indigenous hydrocarbon degraders (IHD) was obtained (S1: 64% and S2: 60%) for fast-stimulating bioremediation. And the consumption of NH4+-N was up to 90% and 94% in S1 and S2 within 60 days for fast-stimulating bioremediation, approximately 1.4 and 2.2 times that (S1: 65% and 62%; S2: 47% and 41%) for slow-stimulating remediation. The results showed that the macro crude oil became the main carbon source for IHD for the fast-stimulating bioremediation, resulting in the rapid growth of IHD. Thus, this study provides a fast and efficient remediation technology for bioremediation of macro crude oil-contaminated soils.

Keywords: Fast-stimulating bioremediation; Macro crude oil; Matching fenton pre-oxidation; Hydrocarbon degraders; Crude oil-contaminated soil.

Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution