; 1
Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
Access Statistics

Site Visitors

blog tracking


 
Energy Reviews
Vol. 1, No. 1, 2015; Pages: 11 - 18

Exploring Microbial Fuel Cell-assisted Bioremediation of Textile Dyes: Energy Conversion

Bor-Yann Chen, Bin Xu, Pei-Lin Yueh, Ke Han, Lianjie Qin, Chuang-Chuan Hsueh, Yufeng Xia

Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan.

Abstract

Prior studies indicated that –OH and/or –NH2 substituent containing auxochrome compounds (e.g., 2-aminophenol and 1-amino-2-naphthol) could act as electron shuttles (ESs) to stimulate wastewater decolorization and bioelectricity generation in microbial fuel cells (MFCs). This study provided first-attempt to disclose how and why thionine-associated textile dyes (i.e., azure A and azure C) could also own such redox-mediating capabilities in MFCs. Due to the presence of iminium part as mediating group, –N(CH3)2 or –N(CH3)H substituent could effectively mediate electron transport compared to –NH2 substituent for bioelectricity generation in MFCs. For dye-bearing wastewater treatment, the presence of electron-mediating textile dyes (e.g., thionine, azure A and azure C) in MFCs is promising to stimulate biodegradation of organics and bioelectricity generation. With such ESs as stimulants, using MFC as operation strategy would be cost-effective for wastewater treatment as oxidation of organic pollutants could be automatically accelerated.

Keywords: Electron shuttles, textile dyes, bioelectricity generation, microbial fuel cells


 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution