Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Microorganisms
Research on Microbes
Database
Bibliography
Publications
Library
E-Resources
Microbiology Experts
Events
Online Submission
mn

Site Visitors

blog tracking


 
Journal of Pest Science
20
14

Insecticidal and anti-microbial activity of bio-oil derived from fast pyrolysis of lignin, cellulose, and hemicellulose

Mohammad M. Hossain, Ian M. Scott, Brian D. McGarvey, Kenneth Conn, Lorenzo Ferrante, Franco Berruti, Cedric Briens

Department of Chemical and Biochemical Engineering, Faculty of Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR), Western University, London, ON, N6A 5B9, Canada.

Abstract

Conflicting views regarding synthetic pesticides include the successful use as pest management tools for agriculture and forestry on one hand and the threats to components in the environment. Likewise, the residues from agriculture and forestry create a waste disposal problem, but are a potential bio-resource to be profited from. This abundant biomass can be converted into bio-fuel and valuable products (e.g., biopesticides) through thermochemical process and provide a potential solution to two problems. The objective of this study was to pyrolyze lignin, cellulose, and hemicellulose plant biomass individually for the separation and identification of pesticide compounds. The biomasses were individually pyrolyzed at 450 and 550 °C in a fluidized bed reactor and the bio-oil was collected from the condenser and electrostatic precipitator (ESP). Lignin ESP bio-oil was the most toxic at both temperatures based on bioassays using (1) insects (Leptinotarsa decemlineata, Trichoplusia ni, and Acyrthosiphon pisum); (2) fungi (Pythium ultimum, Rhizoctonia solani, and Sclerotinia sclerotiorum); and (3) bacteria (Clavibacter michiganensis subsp. michiganensis, Streptomyces scabies, and Xanthomonas campestris pv. vesicatoria). The lignin ESP organic phase retained the insecticidal activity and fractionation by semi-preparative high performance liquid chromatography (HPLC) isolated further the activity. Analyses of these fractions by gas chromatography–mass spectrometry (GC–MS) identified several polycyclic aromatic hydrocarbons (PAHs) potentially contributing to the pesticidal activity, including anthracene, pyrene, phenanthrene, fluoranthene, benzoanthracene, 1-phenylnaphthalene, 1-methylphenanthrene, 2-phenylnaphthalene, and 4,5-methylenephenanthrene. In light of the present study, it may be concluded that lignin is a very promising source of biopesticides when the reactor operating conditions are optimized.

Keywords: Lignin; Cellulose; Hemicellulose; Bio-oil; Biopesticides


 

 

 
Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution