Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission
Access Statistics

Site Visitors

blog tracking

Journal of Invertebrate Pathology
Vol. 111, No.
3, 2012; Pages: 225 - 236

Beauveria brongniartii on white grubs attacking sugarcane in South Africa

T.A. Goble, L. Costet, I. Robene, S. Nibouche, R.S. Rutherford, D.E. Conlong, M.P. Hill

South African Sugarcane Research Institute, 170 Flanders Drive, Mount Edgecombe 4300, South Africa.


Beauveria brongniartii (Saccardo) Petch fungal infections were observed on the melolonthid Hypopholis sommeri Burmeister (Coleoptera: Scarabaeidae) at two sites (Harden Heights and Canema) in the sugarcane producing area of the northern KwaZulu-Natal Midlands of South Africa. To initially identify the disease-causing fungus, 17 different fluorescently-labelled microsatellite PCR primers were used to target 78 isolates of Beauveria spp. DNA. Microsatellite data resolved two distinct clusters of Beauveria isolates which represented the Beauveria bassiana s.s. (Balsamo) Vuillemin (17 isolates) and B. brongniartii (60 isolates) species groups. These groupings were supported by two gene regions, the nuclear ribosomal Internal Transcribed Spacer (ITS) and the nuclear Bloc gene of which 23 exemplar Beauveria isolates were represented and sequenced. When microsatellite data were analysed, 26 haplotypes among 58 isolates of B. brongniartii were distinguished. Relatively low levels of genetic diversity were detected in B. brongniartii and isolates were shown to be closely related. No genetic differentiation was observed between the Harden Heights and Canema populations; they thus may be considered one, structured and fragmented population over a distance of 5.5 km. Historically high levels of gene flow from swarming H. sommeri beetles is the proposed mechanism for this observed lack of genetic differentiation between populations. Microsatellite analyses also showed that B. brongniartii conidia were being cycled from arboreal forest to subterranean sugarcane habitats and vice versa in the environment by H. sommeri life stages. This is the first record of this species of fungus infecting H. sommeri larvae and adults in South Africa.

Keywords: Sugarcane/wattle agro-ecosystem; Biological control; Genetic diversity; Phylogeny; Population genetics; Scarabaeidae



Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution