Home About us MoEF Contact us Sitemap Tamil Website  
About Envis
Whats New
Research on Microbes
Microbiology Experts
Online Submission

Site Visitors

blog tracking

Applied Soil Ecology
67, No. xx, 2013; Pages: 1 - 9

Assessment of shifts in microbial community structure and catabolic diversity in response to Rehmannia glutinosamonoculture

Linkun Wu, Zhenfang Li, Ji Li, Muhammad Azam Khan, Weimin Huang, Zhongyi Zhang, Wenxiong Lin

Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.


Rehmannia glutinosa, a widely used Chinese medicinal herb, has been shown to suffer from serious consecutive monoculture problems that cause significant decline in both yield and quality. The objective of this study was to evaluate the response of the soil microbial community and the effect on catabolic diversity to consecutive monoculture regime using three different techniques: substrate-induced respiration (SIR), phospholipid fatty acid (PLFA) and community-level physiological profiles (CLPP) analyses. We found that basal soil respiration (BSR) was significantly higher in the control and newly planted soils than in the second and third year consecutive monoculture soils. However, no significant difference was observed in SIR among the newly planted, second and third year consecutive monoculture soils. The PLFA signatures indicated that the bacterial biomass was larger than the fungal biomass in all four treatments and both enhanced with the increasing years of monoculture and attained the peak in SM. The ratio of cyclopropyl PLFAs to their metabolic precursors (cy/pre), a measure of physiological stress in microbial communities, in the second and third year consecutive monoculture soils was significantly greater than that in the control and newly planted soils. Biolog analysis results revealed that the consumption of carboxylic acids, phenolic acids and amines, especially acid carbon substrates, in the consecutively monocultured soil was significantly greater than that in the newly planted soil. Both PLFA- and CLPP-based principal component analysis (PCA) and cluster analysis revealed the distinct separation between the control, newly planted plots and the second, third year consecutive monoculture plots. Through our PLFA-based and Biolog analysis, together with microbial respiration determination, we were able to reveal characteristic differences in the microbial community composition and activities in the rhizosphere following R. glutinosa monoculture.




Copyright © 2005 ENVIS Centre ! All rights reserved
This site is optimized for 1024 x 768 screen resolution